P1 - Project description

Topic: Dissolved organic matter driven changes in minerals and organic-mineral interactions during paddy soil development.

Previous studies indicated that the development and biogeochemistry of paddy soils relates to the parent material, thus the original soil paddies derive from. The proposed research focuses on redox-mediated changes in mineral composition and mineral-associated organic matter (OM) during paddy transformation of different soils. We plan to subject soil samples to a series of redox cycles, in order to mimic paddy soil formation and development. Soils with strongly different properties and mineral composition as well as at different states of paddy transformation; ranging from unchanged soils to fully developed paddy soils, are to be included. We hypothesize that dissolved organic matter is one key driver in redox-mediated transformations, serving as an electron donator as well as interacting with dissolved metals and minerals. The extent of effects shall depend on the parent soil's original mineral assemblage and organic matter and their mutual interactions. The experimental paddy soil transformation will tracked by analyses of soil solutions, of the (re-)distribution of carbon (by addition of 13C-labelled rice straw), of indicative biomolecules (sugars, amino sugars, fatty acids, lignin) and of minerals (including the redox state of Fe). For analyses of organic matter as well as of mineral characteristics we plan to utilize EXAFS and XPS, for Fe-bearing minerals also Mößbauer spectroscopy. This approach of experimental pedology seems appropriate to give insight into the major factors during paddy soil formation and development.